

Communication

Synthesis, Isolation via Self-Assembly, and Single-Molecule Observation of a [60]Fullerene-End-Capped Isotactic Poly(methyl methacrylate)

Takehiro Kawauchi, Jiro Kumaki, and Eiji Yashima

J. Am. Chem. Soc., **2005**, 127 (28), 9950-9951• DOI: 10.1021/ja052166b • Publication Date (Web): 24 June 2005 Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 12 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Synthesis, Isolation via Self-Assembly, and Single-Molecule Observation of a [60]Fullerene-End-Capped Isotactic Poly(methyl methacrylate)

Takehiro Kawauchi, Jiro Kumaki,* and Eiji Yashima*

Yashima Super-structured Helix Project, Exploratory Research for Advanced Technology (ERATO), Japan Science & Technology Agency (JST), 101 Creation Core Nagoya, Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan

Received April 5, 2005; E-mail: kumaki@yp-jst.jp; yashima@apchem.nagoya-u.ac.jp

The design and synthesis of C_{60} -containing polymers with a welldefined structure has been of great interest because of their possible applications as advanced materials.1 Varieties of C₆₀-bound molecules have been incorporated into polymer backbones, pendants, or the terminal groups as components.^{1d,2} Among them, the C₆₀end-capped polymers are particularly interesting, because the hydrophobic C₆₀ core self-assembles on a nanometer scale into the micelle or vesicle-like aggregates in polar solvents.³ However, previous studies of the C₆₀-end-capped polymers have mainly focused on their syntheses, structures, and morphology of their aggregates in solution or in the solid. Living radical and anionic polymerizations have often been used to produce C₆₀-end-capped polymers including polystyrene⁴ and poly(methyl methacrylate) (PMMA)⁵ with a controlled molecular weight (MW), but stereoregular C₆₀-end-capped polymers with a narrow molecular weight distribution (MWD) have not yet been prepared. Stereoregular PMMAs are known to supramolecularly assemble into higher-order structures, for instance, the double-stranded helices of isotactic (it)-PMMA⁶ and a stereocomplex of the *it*- and syndiotactic (st)-PMMAs.⁷ Therefore, stereoregular PMMAs having C₆₀ at the controlled chain end combined with crystallization and stereocomplex formation will provide a new sophisticated self-assembly system, for constructing two- and three-dimensional arrangements of the C₆₀ molecules or clusters in polymer materials.

To this end, we report here the preparation and single-molecule observation of a high molecular weight C_{60} -end-capped, stereoregular PMMA (PMMA- C_{60}) with a precisely controlled structure. The highly isotactic PMMA- C_{60} (mm = 98%) with a narrow MWD was synthesized by the stereospecific anionic living polymerization of a methacrylate followed by end-capping with C_{60} . Although the functionality of C_{60} (f_{C60}) of the as-prepared isotactic PMMA was imperfect (ca. 40%), the completely C_{60} -end-capped PMMA ($f_{C60} \approx 100\%$) was successfully isolated through self-assembly of the C_{60} -end-capped PMMA in a polar solvent by size exclusion chromatography (SEC) (Scheme 1). Furthermore, the individual PMMA chains together with the covalently bonded terminal C_{60} molecules were clearly visualized by atomic force microscopy (AFM), which definitely showed the structure of the isolated PMMA- C_{60} .

tert-Butyl methacrylate (*t*-BuMA) was first living and anionically polymerized with (1,1-diphenyl-3-methylpentyl)lithium (*s*-BuDPE-Li) in toluene at -78 °C to give a high MW isotactic polymer with a narrow MWD.⁸ After completion of the polymerization, a solution of C₆₀ in toluene was added to the mixture, yielding poly-(*t*-BuMA)-C₆₀, which converted to PMMA-C₆₀ by hydrolysis of the pendant esters, followed by complete methylation with CH₃I in the presence of 1,8-diazabicyclo[5.4.0]-undec-7-ene (DBU).⁹ The resulting polymer (PMMA-C₆₀) and its prepolymer (PMMA) obtained by quenching the living polymer with CH₃OH were then analyzed by SEC using refractive index (RI) and UV (330 nm) Scheme 1. Synthetic Route of PMMA-C₆₀

dual detectors in toluene. Figure 1 shows the SEC curves of the obtained PMMA- C_{60} (b), together with those of the PMMA prepolymer (a). The PMMA showed a unimodal SEC curve detected only by RI ($M_n = 118\ 000, M_w/M_n = 1.14$), while the PMMA- C_{60} having a chromophoric C_{60} unit at the terminal end exhibited similar SEC curves detected by both the RI and UV; the MWD remained unimodal and narrow ($M_n = 115\ 000, M_w/M_n = 1.14$), indicating that the reaction of the living polymer with C_{60} proceeded bimolecularly without the formation of bisadducts.¹⁰ However, the f_{C60} value estimated by the absorption spectrum of the PMMA- C_{60} on the basis of the molar absorptivity (ϵ) of a model compound (MIB- C_{60})⁹ of the polymer at 330 nm was rather low (ca. 40%), probably due to the low reactivity of the living poly(*t*-BuMA) enolate anion toward C_{60} at -78 °C (Supporting Information).

C₆₀-based amphiphilic derivatives¹¹ and polymers³ were found to self-assemble in polar solvents due to their hydrophobic characteristics. We then used this peculiar feature to isolate the monosubstituted C₆₀-bound PMMA via self-assembly. Regardless of the high molecular weight of the PMMA- C_{60} of more than 10^5 , we found that the PMMA-C₆₀ self-aggregated into clusters in a CH₃OH/tetrahydrofuran (THF) (3/7, v/v) mixture. The aggregation process was time-dependent and required a rather long time in the solvent mixture (Supporting Information). Figure 1e shows the RI and UV detected SEC curves of the PMMA-C₆₀ solution after the sample had been allowed to stand for 96 h. The apparent MWs detected by the RI and UV shifted toward extremely high MWs on the order $10^{6}-10^{8}$, and the shift in the UV trace was significant. These results indicate that the PMMA-C₆₀ self-aggregates into large clusters with C₆₀ as the core and the polymer chain as the shell,^{3,12} while the unreacted PMMA exists as individual polymer chains, because the PMMA prepolymer showed no aggregation under the

Figure 1. RI (solid line) and UV (330 nm, dotted red line) detected SEC curves of PMMA (a, d) and PMMA-C₆₀ before ($f_{C60} = 40\%$) (b, e) and after ($f_{C60} \approx 100\%$) (c) purification by SEC fractionation using toluene (a–c) and CH₃OH/THF (3/7, v/v) (d, e) as the eluent. The SEC curves (d, e) were obtained after the samples had been allowed to stand at room temperature for 96 h. The fraction marked by brackets in (e) was collected and then injected into the SEC system (c).

3

4

5

log MW (PMMA)

6

Figure 2. Tapping mode AFM height images of isolated PMMA-C₆₀ ($f_{C60} \approx 100\%$) spin-cast from a dilute solution in chloroform on mica. The height profile measured along the white line in the image is also shown.

identical conditions (Figure 1d). The PMMA-C₆₀ aggregates were then fractionated by SEC (Figure 1e) and subjected to the SEC system using toluene as the eluent (Figure 1c); the aggregates formed in the CH₃OH/THF mixture were found to completely dissociate into individual polymers in toluene as evidenced by the nearly identical, unimodal RI and UV SEC curves with a narrow MWD as observed for PMMA-C₆₀ before the self-aggregation (Figure 1b). On the basis of the intensity ratio of the RI and UV traces in Figure 1c, the f_{C60} value of the isolated PMMA-C₆₀ was estimated to be almost 100%. In more polar solvents, such as H₂O/ THF (1/9, v/v), PMMA-C₆₀ tended to aggregate more rapidly and efficiently, but the aggregates did not completely dissociate (Supporting Information). Although the mechanism of this aggregation and dissociation phenomena in polar solvents has not yet been clearly elucidated,³ we emphasize that this assembly methodology developed here provides an excellent opportunity to purify other varieties of C₆₀-containing polymers.

AFM provided strong evidence for the structure of the isolated PMMA- C_{60} . Figure 2 shows typical AFM images of the isolated PMMA- C_{60} spin-cast from a diluted chloroform solution. Individual PMMA long chains and spherical C_{60} molecules attached to the PMMA chain end can be clearly seen in the image; the height profile of the cross section (ca. 0.3 and ca. 0.7 nm thickness for the PMMA chain¹³ and the C_{60} molecule, respectively) also supports

the structure of the PMMA- C_{60} . Moreover, the AFM studies indicate that C_{60} molecules attached at the polymer end may be used as a novel label of the polymer chains for the AFM observations.

In summary, we have synthesized and characterized a high MW and stereoregular vinyl polymer with a narrow MWD having the one C_{60} unit at the chain end. Although the functionality of C_{60} was low, the completely C_{60} -end-capped polymers as clearly visualized by AFM can be obtained by self-assembly of the C_{60} units, which offers a useful method to purify the C_{60} -containing polymers. The *it*-PMMA- C_{60} obtained in the present study may be used as an interesting component to construct the supramolecular assemblies with *st*-PMMA- C_{60} , which may produce two- and three-dimensional arrangements of the individual C_{60} molecules or self-assembled clusters that will be applicable to the electrooptic materials.¹ This work is now in progress.

Supporting Information Available: Experimental details, a polymerization table, ¹H NMR and UV–vis spectra of PMMA-C₆₀ and MIB-C₆₀, time-dependent SEC changes of PMMA-C₆₀ in CH₃OH/THF (7/3, v/v) and H₂O/THF (1/9, v/v), DLS measurement results, and ¹³C NMR spectra of low MW PMMA and PMMA-C₆₀. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Reviews: (a) Prato, M. J. Mater. Chem. 1997, 7, 1097–1109. (b) Chen, Y.; Huang, Z. E.; Cai, R. F.; Yu, B. C. Eur. Polym. J. 1998, 34, 137– 151. (c) Cravino, A.; Saricifici, N. S. J. Mater. Chem. 2002, 12, 1931– 1943. (d) Wang, C.; Guo, Z. X.; Fu, S.; Wu, W.; Zhu, D. Prog. Polym. Sci. 2004, 29, 1079–1141. (e) Nierengarten, J.-F. New J. Chem. 2004, 28, 1177–1191.
- (2) (a) Olah, G. A.; Bucsi, I.; Lambert, C.; Aniszfeld, R.; Trivedi, N. J.; Sensharma, D. K.; Prakash, G. K. S. J. Am. Chem. Soc. 1991, 113, 9387– 9388. (b) Samulski, E. T.; DeSimone, J. M.; Hunt, M. O., Jr.; Menceloglu, Y. Z.; Jarnagin, R. C.; York, G. A.; Labat, K. B.; Wang, H. Chem. Mater. 1992, 4, 1153–1157. (c) Geckeler, K. E.; Hirsch, A. J. Am. Chem. Soc. 1993, 115, 3850–3851. (d) Wooley, K. L.; Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 1993, 115, 9836–9837. (e) Hawker, C. J. Macromolecules 1994, 27, 4836–4837.
- (3) (a) Ederlé, Y.; Mathis, C.; Nuffer, R. Synth. Met. 1997, 86, 2287–2288.
 (b) Okamura, H.; Ide, N.; Minoda, M.; Komatsu, K.; Fukuda, T. Macromolecules 1998, 31, 1859–1865. (c) Taton, D.; Angot, S.; Gnanou, Y.; Wolert, E.; Setz, S.; Duran, R. Macromolecules 1998, 31, 6030–6033. (d) Wang, X.; Goh, S. H.; Lu, Z. H.; Lee, S. Y.; Wu, C. Macromolecules 1999, 32, 2786–2788. (e) Tan, C. H.; Ravi, P.; Dai, S.; Tam, K. C.; Can, L. H. Langmuir 2004, 20, 9882–9884.
- (4) (a) Weis, C.; Friedrich, C.; Mülhaupt, R.; Frey, H. Macromolecules 1995, 28, 403–405. (b) Wignall, G. D.; Affholter, K. A.; Bunick, G. J.; Hunt, M. O., Jr.; Menceloglu, Y. Z.; DeSimone, J. M.; Samulski, E. T. Macromolecules 1995, 28, 6000–6006.
- (5) Zhou, P.; Chen, G. Q.; Hong, H.; Du, F. S.; Li, Z. C.; Li, F. M. Macromolecules 2000, 33, 1948–1954.
- (6) Kusanagi, H.; Chatani, Y.; Tadokoro, H. Polymer 1994, 35, 2028-2039.
- (7) Schomaker, E.; Challa, G. Macromolecules 1989, 22, 3337-3341.
- (8) (a) Müller, A. H. E.; Jeuck, H.; Johann, C.; Kilz, P. *Polym. Prepr.* **1986**, 27, 153–154. (b) Varshney, S. K.; Gao, Z.; Zhong, X. F.; Eisenberg, A. *Macromolecules* **1994**, 27, 1076–1082. We also polymerized MMA with the initiator, but the polymerization was not living and its tacticity was rather low (*mm* = 80%).
- (9) Diazomethane was found to react with C₆₀ and a model compound of the PMMA-C₆₀ [(CH₃)₂C(CO₂CH₃)-C₆₀-H] (MIB-C₆₀), and could not be used for the methylation. See: Nishikubo, T.; Iizawa, T.; Takahashi, A.; Shimokawa, T. J. Polym. Sci., Part A: Polym. Chem. **1990**, 28, 105–117.
- (10) A low MW PMMA- C_{60} was also prepared in the same way, but its MWD was broad as previously reported in ref 8b. However, the ^{13}C NMR clearly showed the existence of the C_{60} unit (Supporting Information).
- (11) (a) Korobov, M. V.; Smith, A. L. In *Fullerenes: Chemistry, Physics, and Technology*; Kadish, K. M., Ruoff, R. S., Eds.; Wiley: New York, 2000; pp 53–89. (b) Felder, D.; Guillon, D.; Lévy, R.; Mathis, A.; Nicoud, J.-F.; Nierengarten, J.-F.; Rehspringer, J.-L.; Schell, J. J. Mater. Chem. 2000, 10, 887–892. (c) Nakamura, E.; Isobe, H. Acc. Chem. Res. 2003, 36, 807–815.
- (12) The hydrodynamic diameter of the aggregates was estimated to be ca. 120 nm based on the dynamic light scattering (DLS) measurements (Supporting Information).
- (13) Kumaki, J.; Nishikawa, Y.; Hashimoto, T. J. Am. Chem. Soc. 1996, 118, 3321–3322.

JA052166B